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Cavitation in lubrication. Part 2. Analysis of wavy interfaces 

By M. D. SAVAGE 
School of Mathematics, University of Leeds, England 

(Received 31 May 1976) 

The steady and uniform flow of a viscous fluid past a uniform cavity in a geometry with 
small, yet arbitrary, film thickness is considered. A mathematical model for describing 
steady perturbations to such a flow is presented in which the perturbation to the 
cavity-fluid interface is represented by a small amplitude harmonic wave of wave- 
number n. A linearized perturbation analysis then permits the formulation of a 
boundary -value problem involving the homogeneous Reynolds equation, the solution 
t o  which determines both n and the perturbed pressure field. 

Numerical and approximate analytic solutions are determined for the cylinder- 
plane geometry in which fluid flows between a rotating cylinder and a Perspex block. 
Whilst these compare well with experimental data over the whole range 

0.1 < rjU/T < 3, 

closest agreement between theory and experiment is attained for small values of 
both r j  U / T  and n. 

1. Introduction 
A familiar feature in the flow (i) between counter-rotating rollers, (ii) in a cylinder- 

plane geometry or (iii) in a journal bearing is the presence of an air cavity. This arises 
either by ventilation or when dissolved air is expelled from the viscous lubricant once 
its pressure falls below saturation pressure. 

Figure 1 ( c )  of part 1 shows a cylinder-plane geometry designed so as to provide a 
variable minimum film thickness h, between a Perspex block and a variable-speed 
cylinder. The air cavity is formed downstream of the position of minimum film 
thickness and can be viewed from above directly through the Perspex block. Figures 
l(a)-(d) (plate 1) and figure 2 (plate 2) show the transition from a straight cavity- 
fluid interface to a wavy interface to one of increasing wavenumber, obtained by 
maintaining a constant cylinder speed and gradually decreasing the minimum film 
thickness h,. On examination the cavity-fluid interface appears to exhibit a harmonic 
waviness for small n, yet as n increases distortions arise, causing the interface eventually 
to rupture, in which case the air cavity is seen to consist of a series of adjacent air 
fingers separated by narrow columns of fluid (figure 2). In  part 1 the transition of an 
interface from a straight line to waviness was considered and a criterion established. 
The aim of this investigation is to model the flow once perturbations have arisen and to 
determine those physical parameters upon which the wavenumber depends. 

Previous work on this and related problems, by Floberg and Pearson in particular, 
provides much insight and offers two distinct lines of approach. Floberg (1957) sought 
a numerical solution for the pressure distribution in a cylinder-plane geometry in 
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which the film thickness was given by h(x)  = ho( 1 + x2/2Rho), with R representing the 
radius of the cylinder and x measuring distance downstream of the point of minimum 
film thickness. In  his model Floberg ignored surface tension and assumed that the air 
cavity spanned the full width of the gap between cylinder and block, thus forcing all 
the fluid into the narrow channels separating adjacent air fingers. Such an assumption 
is obviously invalid for small n (figures la-d) and consequently his analysis has 
relevance only in the large n regime. Together his numerical and experimental results 
(obtained using apparatus similar to that shown in figure 1 (c) of part 1) confirmed a 
correlation between (i) the number of air fingers and the non-dimensional minimum 
fluid pressure, (ii) the number of air fingers and the location of the cavity boundary 
and (iii) the number of air fingers and the load capacity. 

Pearson, in an earlier paper (1960), records evidence of phenomena similar to that 
investigated in this paper in a variety of contexts including the tin plate, the printing 
ink, the photographic and the paint industries. Pearson was concerned with the 
problem of ‘spreading’: the effect produced by moving a roller without rotation 
perpendicular to its axis over a flat surface covered with a viscous fluid. He sought an 
analytic solution on the basis that the air fingers arose owing to the presence of a 
secondary disturbance on the main flow. Mathematical difficulties, however, caused 
him to restrict his attention to the analysis of a spreader in the form of a wide-angled 
wedge. By introducing time-dependent perturbations proportional to est cos ny, where 
t is time and y is distance along the axis of the spreader, he was able to obtain theoretical 
results which compared favourably with his experimental findings when the parameter 
qU/T was not large by making the following assumption: that those wavenumbers 
which maximize s will dominate the early stages of the instability and will characterize 
the ultimate steady secondary flow. Also, in direct contrast to Floberg he assumed that 
the fluid which flows beneath the cavity when the interface is continuous (figures 
I d )  continues to do so when the interface ruptures (figure 2 ) ,  none being diverted 
into the channels separating adjacent air fingers. 

In  the following section a mathematical model is developed which incorporates 
a linearized perturbation analysis in the manner of Pearson but in which the perturba- 
tions are steady, thus avoiding the use of a dubious assumption concerning the growth 
of small disturbances. Whereas Pearson was handicapped by not having a complete set 
of boundary conditions for determining explicitly the position of the cavity in the 
uniform two-dimensional flow, we shall use Coyne & Elrod’s (1971) conditions as 
described in part 1. Consequently linearized theory gives rise to two boundary-value 
problems each involving the Reynolds equation and three boundary conditions. The 
first describes the uniform flow (pressure distribution and position of the cavity) whilst 
the second governs the perturbed flow, the solution to which yields the perturbed 
pressure field and the wavenumber n. 

In $ 3  the flow in a cylinder-plane geometry is considered and two methods of 
solution to the second boundary-value problem are examined. The Runge-Kutta 
procedure enables the determination of a numerical solution which suggests that if 
q U / T  is held constant the wavenumber should increase with increasing R/ho. That this 
is indeed the case was established experimentally using several lubricants and covering 
the range 0.1 < qU/T < 3. Agreement between theory and experiment is particularly 
good for small n and small values of q UIT, which is to be expected since once n reaches 
a certain magnitude the assumption that the cavity interface can be represented by a 
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harmonic wave obviously fails whilst the results of Coyne & Elrod are suspect once 
qU/T exceeds the order of unity. 

Of special interest in this problem is the behaviour of n as R/ho is decreased (qU/T 
remaining constant). Does n tend uniformly to zero at  the critical value of R/ho given 
by the stability criterion discussed in part 1 or indeed a t  some other value of R/ho? An 
analytic solution, obtained by suitably approximating the Reynolds equation, clearly 
demonstrates that (i) the stability criterion is too strong a condition for predicting the 
transition from a straight cavity-fluid interface to one represented by a harmonic wave, 
(ii) when waviness first arises it is characterized by a distinct non-zero wavenumber 
NO, and (iii) on the graph of wavenumber against Rlh,, (NO, (R/h0)O) corresponds to a 
point of bifurcation from which emerge two branches such that a t  any Rlh, abore the 
minimum there exist two possible values of the wavenumber. Of the two branches it is 
the large n branch which is manifested in practice whilst theoretically it is possible to 
identify this solution as the one which incurs the least rate of energy dissipation. 

2. Mathematical model 
Figure 3 shows an x, 2 cross-section of the flow through a gap of arbitrary thickness 

h(x) in the vicinity of the cavity whilst figure 2 ( b )  of part 1 provides an x, y cross-section 
of a cavity-fluid interface subject to a harmonic perturbation. I n  such a flow the 
pressure distribution P(T ,  y) is given by the Reynolds equation once the usual assump- 
tions of 1ubricat)ion theory have been invoked; 

If the pressure is specified as atmospheric (zero) a t  x = - co and if x = cis the position 
a t  which the cavity forms, then both c and the pressure Po(x) in a uniform flow subject 
to no perturbations are determined from the following boundary-value problem : 

PO( - co) = 0, pO(c) = - T/r,  (2.3), (2.4) 

p,(c) 0 = 8P0 -(c) = - 6qu (1 - 2 +J, 
h2(C) 8X ( 2 . 5 )  
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where r = /lh(c) is the radius of curvature of the cavity interface in the x ,z  plane, 
h,  = ah(c), and both a and /l are functions of q U / T  only whose values have been 
computed by Coyne & Elrod (1971). 

Once steady perturbations arise, if we assume them to vary harmonically with y and 
to be of magnitude E (e 6 c )  and wavenumber n then x = c + e sin n y  becomes the new 
location of the cavity-fluid interface whilst the pressure distribution can be expressed as 

P ( x ,  y )  = Po((.) + sG(x) sin ny. (2.6) 

The objective is now to determine both n and Gfx). 

u = v = Oonz = Oandu = U ,  v = Oonz = h(x )  isgiven by 
In the x, y plane, the velocity distribution (u, v )  satisfying the boundary conditions 

I n  addition the governing differential equation for G(x)  is found by substituting (2.6) 
into (2.1),  as a result of which terms of order E yield 

Gzz + (3hz/h) G, - n'G = 0. (2.8) 

Again taking the pressure a t  infinity to be atmospheric gives G( - co) = 0 whilst a t  
the cavity fluid and surface-tension pressures balance each other if we assume the 
cavity pressure also to  be atmospheric. Hence 

-T 
/lh(c + E sin n y )  

P(c + E sin n y )  + sG(c + E sin n y )  sin n y  = + sTn2 sin ny, 

the last term representing that contribution to surface-tension pressure arising from 
curvature in the x, y plane. Linearizing and equating terms of order E yields the 
relationship 

G(c) = Th,(c)/ph2(c) - Pz(c) + n2T. 

A further condition on G(x)  is obtained via an equation of continuity. Figure 3 shows 
an x , z  cross-section through any station y ,  in which fluid possessing velocity com- 
ponents in the x and y directions approaches the cavity in region I and subsequently 
passes through a transition region, region 11, before emerging into region 111 in a 
uniform layer of thickness h:. Following Coyne & Elrod the transition region will be of 
order h(c) in extent, so that gradients with respect to  both x and z far exceed those with 
respect to  y ,  i.e. a/ax % a/ay and a/az % a/ay. Consequently there will be no lateral 
diffusion in the transition region, the flow being essentially two-dimensional (in the 
x, z plane), and continuity of flow requires that 

I 0 V c  + E sin n y )  

u ( x , ~ , z ) ~ z  = Uh:, 

from which is derived the expression 

(2.10) 

(2.11) 

P:(r + E sin n y )  + EG,(c + e sin ny) sin ny = 
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At this stage it is convenient to employ an important result from the work of Coyne & 
Elrod, namely that when rU/T is constant the ratio of the thickness of the uniform 
layer at infinity to the film thickness at the leading edge of the cavity is also constant; 
hence for all y 

h% =--=a. ha3 (2.12) 
h(c + B sin n y )  

Linearizing (2 .11)  and using (2 .12)  provides the required condition: 

h(c) 

(2.13) 

Eliminating P&.(c) via (2 .2 )  and (2 .5)  and introducing the change of variables 
5 = (2Rho)3X (c = (2Rho)4C),  G(s) = ( 6 r U / h 2 ( c ) ) g ( X ) ,  n(2Rh0)4 = N permits the 
formulation of the following boundary-value problem for g ( X )  and N :  

gxx + ( 3hay/h) - N2g = 0, - 00 < X < C ,  (2.14)  

(2.15) 9( - 00) = 0, 

T h,(c) T N2h2 
6 q U p  (2Rh0)4 127U Rho ’ g(C) = - ( 1 - 2 a ) + -  - +-- (2 .16)  

= ( - 2h,/h) a. (2.17) 

Before solving (2.14)-(2.17) for a particular geometry, certain deductions are 
possible; in particular g(C) must be less than zero for any solution to exist. This result 
is deduced by way of the following argument. Equation (2.14) can be used to infer that 
g ( X )  has no maxima or minima over the range - co < X < C .  Hence (2 .15)  implies that 
g(X) tends monotonically to zero at infinity from its specified value at  X = C and 
consequently both g(C) and gx(C)  must have the same sign. Consequently perturbs- 
tions arise only when g(C) < 0. Conversely there is no solution (and so no perturbation) 
when g(C) > 0, i.e. 

(2.18) 

which is precisely the criterion established in part 1. Whilst this criterion guarantees 
the stability of a uniform flow (and a uniform cavity-fluid interface) it does not follow 
that when this criterion fails harmonic perturbations will immediately arise. In  fact 

is a necessary but not a sufficient condition for the existence of a solution to (2.14)- 
(2.17)’ a fact which will become clear in the following section. 

3. Method of solution 

given by h ( X )  = h,( 1 + X2), the preceding boundary-value problem becomes 
Turning our attention to the cylinder-plane geometry, in which the film thickness is 
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g(C) = - (1-2a)+-  T ( 2 h o p + m l  (ho) R N2( 1 + C2)2, 
6qUP R 

This is complete once the substitution C = tan yc is made and (2 .2)-(2.5)  are solved to 
obtain a relationship between y", R/ho and 7 U / T :  

377 sin2yC sin4yC)I . (3 .5)  +- 
It is apparent that N depends only upon the two independent parameters R/ho and 

7 U/T and can be determined numerically using the Runge-Kutta procedure. To begin 
with, values are assigned to R/ho and qU/T and subsequently yc is determined from 
(3 .5 ) .  A 'suitable' guess is then made for N ,  which enables (3 .1 )  to be solved in con- 
junction with boundary conditions (3 .3 )  and (3 .4 ) ,  as a result of which a value of 
g( - B )  is obtained, where B is a suitably chosen, large and positive real number. N is 
now varied until g( - R) becomes 'sufficiently close' to zero and eventually, after some 
labour, a value of N is obtained for each pair of parameter values (7 UIT, Rlh,). It is 
relevant to add that experimental results provided the basis for making the initial 
choice of N and a t  no time did we suspect or indeed discover (numerically) the existence 
of more than one solution for N for each parameter pair ( q U / T ,  Rlh,). Experimental 
and numerical results are contrasted in figures 4 (u)-(c), which also include results 
obtained via an approximate analytic method, which will now be considered. 

-*" cos y [ (y+G +4 32 

4. An approximate analytic solution 
The determination of an exact analytic solution to (3 .1 )  is hindered by the coefficient 

of gx, namely 3hx/h, which is associated with the geometry. This coefficient also appears 
in (2 .2 ) ,  where it is crucial in determining the location of the cavity. I ts  significance in 
(3 .1 )  is much less crucial since here the first two terms govern the decay of the perturba- 
tions which are generated at the interface. Intuition suggests and experiment confirms 
that the perturbations do decay rapidly over a distance of the order of (Rho)* such that 
a t  x = 0, the position of minimum film thickness, there is virtually no trace of the 
perturbed flcw . This being the case it is not unreasonable to approximate hx/h by its 
value at the cavity and thus derive the solution 

g ( X )  = g(C) eW(X-C) (4 .1 )  

k = 3C/( 1 + Cz). ( 4 4  

to (3 .1 ) ,  which also satisfies (3 .2 )  and (3 .3 )  and in which 

w = - k + [k2  + hT2]4, where 

Finally condition (3 .4 )  yields the relationship 
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FIGURE 4. The number of waves in a width R against (R/h,)h for (a) 7U/T = 0.2, (b)  qU/T = 0.6 
and (c) qU/T = 1-4. , determined experimentally; - - -, determined numerically; -, deter- 
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FIGURE 5 .  Graph of y = p 3  superimposed on y = (a/b) p - 2kpa - d/b for three distinct sets of values 
of the coefficients (a/b, - 2k, -d/b) corresponding to three values of R/h, with TU/T held constant. 

and writing u = (1 -2a) - -  C ,  
67Up R 

T ho 4Ca 
b = - (-)(1+C2)2, d = - 

12yU R 1 +c2 

transforms (4.3) into (k2 + N2)* = d / ( a  - bN2) + k.  

p 3  + 2kp2 - ( a / b ) p  + d/b = 0. 

(4.4) 

(4.5) 

This can then be reduced to a cubic equation via the substitution p = d / ( a  - bN2):  

As stated earlier, a necessary condition for the existence of a solution to (3.1)-(3.4) 
is g(C) < 0, i.e. a - bN2 > 0, and since d > 0 such solutions correspond to positive real 
roots of (4.5). That this equation may exhibit two distinct, one or no positive real roots 
is readily seen from figure 5, in which 9 U/T is held constant and the graph of y = p 3  is 
superimposed on those of y = ( a / b ) p  - 2kp2 - d/b for three distinct values of Rlh,. The 
three parabolas intersect the cubic at respectively no, one and two points for which 
p > 0 and therefore correspond physically to (i) uniform flow, (ii) perturbed flow with a 
unique wavenumber and (iii) perturbed flow with two theoretically possible wavy 
modes. 

Specifying R/ho and qU/T and solving (4.5) for positive realp (when such solutions 
exist) enables the corresponding wavenumber( s) to be obtained and the resultas are 
displayed in figures 4 (a)-(c).  
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5. Discussion of results 
Figures 4(a) ,  (b)  and ( c )  show the variation of nR/2n, the number of waves in a width 

equal to the cylinder radius, against (R/h,)* for qU/T  = 0.2, 0.6 and 1.4 as determined 
experimentally and calculated both numerically and analytically. These curves clearly 
demonstrate that, for a given q U / T ,  (a)  there is a critical value of Rlh,, say (R/h0)O, 
below which the basic two-dimensional flow is stable to harmonic perturbations, (b)  this 
critical point is a point of bifurcation from which emerge two branches as (Rlh,) is 
increased and ( c )  experimental results confirm that it is the upper (large n )  branch 
which is seen in practice. 

The bifurcation point corresponds to (4.5) having two equal and positive roots, i.e. 
when the graph of y = p3  just touches that of y = ( a / b ) p -  2kp2-d/b, a t  po  say. It is 
easily shown that this arises when 

the last expression giving that value of the wavenumber which characterizes the first 
perturbations to appear. 

In this problem, as in certain others which'exhibit bifurcation, the phenomenon of 
non-uniqueness can be considered in the light of an appropriate variational principle. 
Indeed, it is possible to identify the physical solution (for the disturbance) as the one 
which incurs the least rate of energy dissipation, as follows. 

The Reynolds equation for the perturbation pressure p ( X ,  y) = B G ( X )  sinny is 

where the subscripts X and y indicate differentiation with respect to X and y respec- 
tively. This equation has a Lagrangian given by L = h3(& + 8;) and may therefore be 
derived from the following variational principle : 

r r  
h3@> + p:) d X  dy = 0, 

Wl2 
(5.3) 

where R is that domain of the X ,  y plane over which the disturbance is present. 
Recall that any solution of ( 5 . 2 )  for P ( X ,  y) is one which makes the integral appearing 

in (5.3) stationary. Then our current objective is to relate this integral to the solution 
seen in practice, i.e. the large n branch in figures 4(a ) - ( c ) .  However, owing to the 
periodicity in y we shall restrict our attention to the region 

8 =  {-co < X 6 C ,  o < y 6 2n/n} 

and consider the integral 

C 
= 1 2 q ~ 2 / - ~  h3(G>+n2G2)dX. (5.4) 
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FIGURE 6. A plot of nRI2n against the parameters vV/T  and (Rlh,)) producing an 

equilibrium surface with an elementary fold catastrophe. 

If, in addition, we calculate the rate of energy dissipation in a volume of fluid lying 
above the region R of the X, y plane (and include only derivatives with respect to z )  
we find that 

where u and v are velocity components given by (2.7). 
Hence the rate of energy dissipation D per unit width is given by D = D(27r/n)-1, 

which will include terms of order zero, order 6 and order e2. The terms of zero order do 
not involve n, those of order E disappear when the integration over y is performed whilst 
terms of order €2 combine to produce the integral I given by (5.4), which via the relation 
(h3Gx)x = n2h2G can be expressed in the form 

I = 1 2 7 ~ ~  / [(h3Gx) G ,  + (h3Gx),G] dx. 
C 

- w  

Thus 

In (5.6) both h(C)  and G x ( C )  are independent of n whilst G ( C )  = - a  + bN2 < 0 and 
therefore the magnitude of I decreases with increasing n. Hence it follows that the 
physical solution (the large n branch of figures 4 (a)-(c)) is the one which minimizes the 
function I ( n )  and hence one which incurs the least rate of energy dissipation. 

Referring once again to figures 4 (a)-(c), it is clear that there exists good agreement 
between theory and experiment during the early stages of instability, when n is small, 
but as n increases an overestimate of n is predicted and the divergence grows. Such a 
disparity arises since the twin assumptions of small amplitude ( E  Q c )  and the presence 
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of a harmonic wave on the interface begin to fail (figure 1 d ) ;  and subsequently become 
invalid for larger n as shown in figure 2 .  

As catastrophe theory is currently in vogue, it is considered appropriate to present 
the results in the context of this theory, for which the behaviour variable n is plotted as 
a function of the two independent parameters TU/T and Rlh,, thus giving rise to  the 
equilibrium surface shown in figure 6. Such a surface corresponds to a fold catastrophe, 
which is the simplest of the elementary catastrophes described by Brocker (1975). 

Finally, appreciat,ion is extended to Professor T. G. Cowling, who suggested a possible 
link bekeen the physical solut,ion and t'he rate of energy dissipation. 
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FIGURE 1. The transition from a straight cavity-fluid intetfaco to a wavy interface. 
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FIGITRE 2. Tho large wavcrinmber regime, in which the interface 
consists of it series of atljitccnt air fingers. 

Plate 3 

SAVAGE 


